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Abstract
Successful application of graphene requires development of various tools for its chemical 
modification. In this paper, we present a Raman spectroscopic investigation of the effects of 
UV light on single layer graphene with and without the presence of O2 molecules. The UV 
emission from a low pressure Hg lamp photolyzes O2 molecules into O atoms, which are 
known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups 
were identified by the disorder-related Raman D band. It was also found that adhesive resi-
dues present in the graphene samples prepared by micro-mechanical exfoliation using adhe-
sive tape severely interfere with the O atom reaction with graphene. The UV-induced reac-
tion was also successfully applied to chemical vapor deposition-grown graphene. Since the 
current method can be readily carried out in ambient air only with UV light, it will be useful 
in modifying the surfaces of graphene and related materials. 
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1. Introduction

Graphene has drawn intense research efforts since its first practical isolation was demon-
strated in 2004 [1,2]. Its unique and novel material properties are expected to lead to many 
useful applications such as transparent conductive electrodes [3-5], nanoelectronics [6], and 
smart nanocomposites [7]. Since the electronic properties of graphene are highly sensitive 
to chemical interaction with its environments [1,8-10] owing to its peculiar electronic struc-
ture [11] and high surface/volume ratio, the understanding and manipulation of its chemi-
cal properties are essential in realizing such applications. Since graphene and graphite are 
highly inert against general chemical treatments, its chemical modification has resorted in 
harsh conditions such as oxidation at elevated temperatures [12], radical reactions [13-15], 
and strong mineral acids [16]. Although the previous approaches have their own strengths, 
some of them cannot be applied to certain applications due to their extreme conditions. In 
this regard, photo-induced chemical reactions can be beneficial since they require neither 
high temperatures nor strong acids. For instance, Liu et al. [17] have demonstrated that the 
crystalline structure of graphene can be modified by shining visible light with graphene im-
mersed in an organic acid.

In the current study, we report that graphene exfoliated from crystalline graphite can be 
readily modified by oxygen atoms generated by UV photolysis of oxygen molecules. The 
introduced structural disorder was characterized by Raman spectroscopy [13,18]. We also 
found that the polymeric residues [19] originating from the adhesive tape used during the 
preparation of the graphene samples interfere with the oxygen-mediated photoreaction. The 
photoreaction was also successfully applied to large-scale graphene sheets grown by chemi-
cal vapor deposition (CVD) method.
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2.3. Raman spectroscopy

All the Raman spectra were obtained in a back scattering ge-
ometry using a 40x objective lens (NA = 0.60) in ambient condi-
tions using a home-built micro-Raman setup, details of which 
were described elsewhere [19]. As excitation source, an Ar ion 
laser and an He-Ne laser, operated at wavelengths of 514.5 nm 
and 632.8 nm, respectively, were used. Spectral resolution val-
ues, defined by the line width of the Rayleigh scattering peak, 
were 11 and 3.5 cm-1 for the Ar and He-Ne laser excitation, re-
spectively. The average laser power values were 1.7 and 4.3 mW 
for the Ar and He-Ne laser excitation, respectively.

3. Results and Discussion

Fig. 1a shows the Raman spectra of the graphene (sample set 
A) before and after UV irradiation under O2 and Ar atmospheres. 
Disorder-related Raman D band was not observed at ~1320 cm-1 
in the pristine graphene, indicating the high crystallinity of the 
sample. After the pristine graphene sample was mounted in the 
optical cell, oxygen gas was introduced through the cell. To 
generate oxygen atoms in situ, UV light from the Hg lamp was 
shone onto the sample for 45 min. The Raman spectrum (middle 
in Fig. 1a) obtained following the irradiation revealed a promi-
nent D band, which indicates that the photoirradiation caused a 
significant number of defects on the basal plane of the graphene 
sheet [18]. To test whether the formation of the defects is di-
rectly related to the presence of O2, a similar run of experiment 
was carried out under Ar gas environment instead of O2. Surpris-
ingly, the top spectrum in Fig. 1a obtained after UV irradiation 
for 45 min under Ar atmosphere shows an even larger D band. 
Since the Ar gas does not absorb light in the wavelength range 
of the Hg lamp’s emission, this suggests that a third body is in-
volved in the photoreaction. The optical micrographs shown in 
Figs. 1b and c were taken before and after the photoirradiation in 

2. Experimental

2.1. Sample preparation

Three sets of graphene samples were prepared on Si substrates 
covered with a thermally grown SiO2 layer of 285 nm thickness. 
All the substrates were thoroughly cleaned with piranha solution 
followed by rinsing with distilled water and drying under N2 blow. 
Graphene of the sample set A was prepared by the well-known 
micro-mechanical exfoliation of kish graphite (Covalent Materials 
Inc.). Although this method provides graphene samples of the best 
crystallinity, it also generates a significant amount of polymeric 
residues near the exfoliated graphene sheets since adhesive tape is 
used to exfoliate thin flakes onto the substrates. Sample set B was 
prepared by rubbing chunks of kish graphite against the substrates. 
While the yield of generated graphene sheets is very low, it does 
not leave any further contaminants on the substrates. Sample set C 
was prepared by transferring CVD-grown graphene onto the sub-
strates according to the procedure described elsewhere [4].

2.2. Photoirradiation

For photoirradiation under a controlled gas environment, each 
of the samples was mounted in an optical flow cell with a 0.50 
mm thick quartz window and an internal volume less than 100 
mL. Either Ar or O2 gas (>99.999%) was introduced through 
the cell at a rate of 300 mL/min and the outgoing gas was made 
into bubble in a mineral oil. Photoirradiation was initiated af-
ter allowing the gases to flow through the cell for 20 min. The 
UV source, a pencil-type low pressure Hg lamp (Oriel, 6035), 
was operated at 10 mA in AC mode. Although its most intense 
spectral line is located at a wavelength of 254 nm [20], it also 
generates non-negligible emission at 185 nm that can photolyze 
O2 molecules into O atoms [21]. The distance between the lamp 
and the graphene sample surface was 7 ± 0.5 mm. 

Fig. 1. Interference of adhesive residues on the photoinduced reactions of graphene. (a) Raman spectra of graphene before (bottom) and after UV irradi-
ation under O2 (middle) and Ar (top) atmospheres. Graphene sheets were separated from kish graphite and deposited onto SiO2/Si substrates via microme-
chanical exfoliation method using adhesive tape. The peaks marked with an asterisk are plasma emissions from the employed He-Ne laser (λexc = 633 nm). (b) 
& (c) Optical micrographs of graphene sheets (dashed arrow) taken before (b) and after (c) UV irradiation under Ar gas. The duration of photoirradiation for (a) 
and (c) was 45 min.
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known to form fairly stable C-H functional groups on the basal 
plane of grapheme [13,14]. Other radical species have also been 
found to undergo similar reactions [15,23,24]. Since the maxi-
mum photon energy of the employed UV light is beyond the 
photodissociation threshold for most organic polymers, it can 
be assumed that the photoirradiation generates various gaseous 
organic radicals that diffuse and attack the basal plane of the 
graphene sheets. However, the characterization of the surface 
functional groups on the graphene sheets is beyond the scope of 
the current study.

The practical applicability of the UV reaction was tested with 
CVD-grown graphene (sample set C), which holds promise as a 
material for large-area transparent conducting electrodes. Since 
the preparation of the samples includes polymer-supported 
transfer involving etching Cu foils, however, the resulting gra-
phene transferred onto SiO2/Si substrates contains polymer resi-
dues and other contaminants [25]. Thus it is of importance to as-
sess whether or not the inevitable surface contaminants interfere 
with the photoreactions. As shown in Fig. 4, the photoirradiation 
causes the D band to grow with graphene in O2 atmosphere, but 

the Ar gas flow. The yellow-greenish materials scattered around 
the thin graphene flakes in Fig. 1b are polymeric residues pro-
duced during the micro-mechanical exfoliation using adhesive 
tape [19]. Upon the UV irradiation under Ar atmosphere, the 
residues almost disappeared due to photodecomposition. This 
suggests a possibility that the formation of the D band caused by 
photoirradiation in Ar atmosphere relates with the presence of 
the polymeric materials. 

To investigate the role of the polymeric residues during the 
photoreaction, graphene sample set B was prepared from the 
same kish graphite as used for the sample set A but without 
using adhesive tape. Fig. 2a shows the series of Raman spec-
tra obtained by varying the photoirradiation time (t) with the 
residue-free sample in O2 and Ar gases, respectively. While the 
intensity of the D band increases with the increasing of the ir-
radiation time in O2 gas, it does not grow in Ar gas. The contrast 
between the ambient gases can be more clearly found in Fig. 3, 
which presents the intensity ratios between the D band and the 
G band: peak area ratios (AD/AG) and peak height ratios (HD/
HG) are very consistent with each other. In O2 atmosphere, in 
particular, HD/HG starts to increase at t = 15 min, reaching 0.21 
at t = 25 min, while it remains in the range of 0.02~0.03 for the 
case of Ar atmosphere. 

Fig. 2 indicates that the UV light itself does not cause chemi-
cal changes in graphene. In O2 atmosphere, the incoming UV 
light (λ ≥ 185 nm) photolyzes O2 molecules into reactive O at-
oms because the photodissociation threshold wavelength of O2 
is 242.4 nm [21]. Since oxygen atoms are known to form epoxy 
groups on the perfect basal plane of graphite [22], the D band in 
Fig. 2a is attributed to epoxy functional groups on the graphene 
surface. The growth of the D band in the photoirradiated gra-
phene under Ar atmosphere (Fig. 1a), however, can be attributed 
to reactive chemical species generated from the adhesive resi-
dues by the UV light, which is consistent with the UV-induced 
removal of the polymeric residues (Fig. 1c). 

While the chemical nature of the UV-generated intermediates 
under Ar gas atmosphere is not known in the current study, re-
cent reports on chemical reactions of graphene shed some light 
on the possible mechanisms. For example, hydrogen atoms are 

Fig. 2. UV-induced changes in the Raman spectra of graphene exfoliated from kish graphite onto SiO2/Si substrates without using adhesive tape. The irra-
diation of UV light was carried out for a period (t) specified in the graphs with samples in (a) O2 and (b) Ar atmospheres. (λexc = 514 nm). The Raman spectra in (a) 
contain a small contribution from a nearby double-layer graphene because of the limited size of the single-layer graphene, which explains the line shape of 
2D bands in (a). Nevertheless, the conclusion is not affected since chemical reactivity decreases with the increase of thickness [12].

Fig. 3. Intensity ratios of D band to G band of the photoirradiated gra-
phene, obtained from Fig. 2. Peak area (integrated intensity) and height 
ratios agree well with each other.
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grown graphene can be modified by controlling the presence of 
O2 gas. This simple method can be readily carried out in ambient 
air and thus will be useful in chemical modification of graphene 
in the future.
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